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Superstrings, Knots, and Noncommutative
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Within a general theory, a probabilistic justification for a compactification which
reduces an infinite-dimensional spacetime %( ` )(n 5 ` ) to a four-dimensional one
(DT 5 n 5 4) is proposed. The effective Hausdorff dimension of this space is
given by ^ dim H %( ` ) & 5 dH 5 4 1 f 3, where f 3 5 1/[4 1 f 3] is a PV number
and f 5 ( ! 5 2 1)/2 is the golden mean. The derivation makes use of various
results from knot theory, four-manifold s, noncommutative geometry,
quasiperiodic tiling, and Fredholm operators. In addition some relevant analogies
between %( ` ), statistical mechanics, and Jones polynomials are drawn. This allows
a better insight into the nature of the proposed compactification, the associated
%( ` ) space, and the Pisot±Vijayvaraghavan number 1/ f 3 5 4.236067977
representing its dimension. This dimension is in turn shown to be capable of a
natural interpretation in terms of the Jones knot invariant and the signature of
four-manifolds. This brings the work near to the context of Witten and Donaldson
topological quantum field theory.

1. INTRODUCTION

As succinctly noted by Duff [1] ``Unfortunately, superstrings have as

yet no answer to the question of why our universe appears to be four dimen-

sional, let alone why it appears to have a signature (3, 1).’ ’

In the main part of the present work we intend to give an answer to

this question. In the course of doing that, we will be utilizing and also
discovering various analogies and some nontrivial relations between our

probabilistic approach to ``compactification’ ’ and several other branches of

current research in pure and applied mathematics, in particular knot theory

[2] and noncommutative geometry [3].

Our main thesis is that the dimensionality of spacetime, as occasionally
speculated in the past by some notable scientists, is a derivable property
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akin to temperature [20]. In fact we will be showing that the apparent

dimensionality of our every-day spacetime D T 5 4 is derivable from

more primitive assumptions and follow from the same law of statistical
distribution used by M. Planck to derive his well-known formula for

blackbody radiation. This formula, we may recall, was, at least historically

speaking, the beginning of quantum physics. Naturally, to undertake such

analysis we will have to introduce some radical deviation from our classical

notion of spacetime. The most decisive point in that respect is the

introduction of randomness and scale invariance to the very concept of
spacetime geometry, which in turn shows that spacetime loses its smoothness

when we sharpen the resolution of observation as is essential for the

micro spacetime of quantum physics. This spacetime, which we refer to

as Cantorian space time %( ` ) for obvious reasons, has some remarkable

properties [4±13]. First, it is an infinite-dimensional hierarchical and

random geometrical manifold with infinite numbers of equivalent paths
(connections) between any two points. Second, any so-called point in this

space will always reveal a structure on a close examination, so that strictly

speaking the concept ``point’ ’ does not exist in %( ` ), which is a resolution-

dependent zoom space. It then turns out that %( ` ) is basically a form of

noncommutative geometry. The simplest and best-studied example for such
a geometry would be the famous Penrose tiling. It is therefore not surprising

that Penrose tiling was presented from the very beginning as a low

dimensional example for %( ` ) as well as NCG which obeys a noncommuta-

tive C*-algebra [3].

Another point of importance is the connection between the basic formulas

defining %( ` ) and the Jones knot polynomial VL [8]. In fact it turned out that
a fundamental upper bound for VL is given by a formula which is a special

form of the basic bijection formula of %( ` ) and that the well-known Hausdorff

dimension of a quantum path dH 5 2 may be derived from the properties of

knots in R 4. Finally we will show that the set of Penrose tiling and quasi

crystallography provides a unique space where the classical and quantum

descriptions of spacetime meet [6]. In [21] some proposals for experimental
verrification of dH 5 2 are given.

2. THE CANTORIAN SPACE %%( ` )

The basic conept and equations of the space %( ` ) were introduced in

some detail on numerous previous occasions, so that we may confine ourselves

to a short introduction coupled with a summary of the main equations [4±13].

For simplicity we may start with Mauldin±Williams theorem, which states
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that with a probability one, a randomly constructed triadic Cantor set 6 (0)
c

will have a Hausdorff dimension equal to the golden mean

dim
H

S (0)
c 5 d (0)

c 5 f 5 ( ! 5 2 1)/2 (1)

The question is now, how can we lift this formula to n dimensions, i.e. what

is the Hausdorff dimension of 6 (n)
c . It turned out that a very simple formula

is all that we need. This formula is a generalization of the relationship between

the triadic Cantor set dc 5 ln2/ln3 and the Sierpinski gasket d s 5 1/dc 5
1/(ln2/ln3) 5 ln3/ln2 and is termed the bijection formula [4±13]

dim
H

S (n)
c 5 d (n)

c 5 1 1/dim
H

S (0)
c 2

n 2 1

5 (1/d (0)
c )n 2 1 (2)

Consequently, in four dimensions, the Mauldin±Williams theorem is

dim
H

6 (4)
c 5 (1/ f )(4 2 1) 5

1

f 3 5 4 1 f 3 5 4.236067977 (3)

where 1/ f 3 is known as the Pisot±Vijayvaraghavan number [19].

Next let us construct the %( ` ) space ab initio. We do that using an infinite

number of Cantor sets S (0)
c with all conceivable Hausdorff dimensions in the

unit interval. Suppose these sets are all ``mixed’ ’ together in all possible

forms of union and intersections to form one large space made of infinite
weighted dimensions. Now we ask the following question. What is the expec-

tation value for the dimensionality of this formally infinite dimensional space?

To answer this question we need to know the distribution function according

to which it was constructed. Assuming a gamma distribution G , the expectation

value of this Gaussian distribution is [4±13]

E G (n) 5 ^ n & 5 r/ l (4)

Setting the shape factor r 5 2 and substituting for the mean value of a Poisson

distribution of the elementary Cantor sets, i.e., l 5 ln (1/d (0)
c ) in E G (n),

one finds

K dim
T

%( ` ) L 5 ^ n & 5 2/ln (1/d (0)
c ) 5 dim */ln 1 dim

H
S (2)

c 2 (5)

where * is the Hilbert space of Witten theory for two spheres with four points.

Expanding and retaining the linear terms only, we obtain

, K dim
T

%( ` ) L 5 , ^ n & 5 (1 1 dim
H

S(0)
c )/(1 2 dim

H
S(0)

c ) 5
1 1 d (0)

c

1 2 d (0)
c

(6)

It was shown in previous work that the last expression is exact within a

genuinely discrete space [12].
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Now, to have a space filling it is clear that we must satisfy the following

condition [12]:

, K dim
T

%( ` ) L 5 , ^ n & 5 d(n)
c 5 (1/d(0)

c ) n 2 1 (7)

It is an elementary matter to solve the above equation and show that it can

be satisfied iff d(0)
c 5 f 5 ( ! 5 2 1)/2 and n 5 4.

In other words, the expectation value for the dimensionality of %( ` ) is

identical to Mauldin±Williams theorem in four dimensions. Consequently
our %( ` ) space, although of infinite dimension, has an effective finite expecta-

tion value for the topological dimension (n 5 4) and appears therefore as if

it were four dimensional. This is a very similar situation to that of a Bethe

lattice [9]. It is not particularly difficult to show that the same space also

has an expectation value for the Hausdorff dimension given by

K dim
H

%( ` ) L 5 ^ dc & 5 , K dim
T

%( ` ) L 5
1

(1 2 d (0)
c ) d (0)

c

5
1

f 3 (8)

The above equation will be shown in Section 4 to correspond to equation

(21) of the theory of subfactors [3].

We have also given elsewhere some arguments for the fact that the

signature of spacetime must be perceived as (3, 1), which we will not repeat
here [12].

To sum up, Cantorian spacetime %( ` ) is infinite dimensional but has an

effective Hausdorff dimension dH 5 ^ dc & . 4, while the topological dimension

of the core is exactly 4. We have thus reduced the infinite dimension to a

hierachical four-dimensional space. The idea is very different from the original

three main methods of compactification used in superstrings, namely toroidal
compactification, orbifold compactification, and Calabi±Yau compactifica-

tion. There, a finite internal manifold is left over after compactification where

the vibration of the strings take place. Such a manifold could be a six-

dimensional orbifold, for instance. A detailed discussion of our approach to

this point will be given elsewhere.

It seems therefore that we in the macroworld are aware of the four
dimensions only, while the infinite rest are very unlikely to be observed in

a sense similar to the extremely tiny compactified dimensions of all types

of Kaluza±Klein theories. It is important to note the remarkable continuous

fractal representation of , ^ n & , namely

, ^ n & 5 4 1 f 3 5 4 1 (4) 5 1/(4) (9)

It suggests an imaginative picture of a 4D fractal universe containing a much
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smaller 4D fractal universe and so on ad infinitum. We may mention that

the preceding analysis was inspired by an old proposal due to A. Wheeler.

For more details of the analysis and a discussion of its implications we refer
the reader to refs. 4±13.

3. KNOT THEORY AND %%( ` )

A knot is defined as a smooth-embedding of a circle in R3 [2]. An

important result in this subject is the discovery of the following index by
Jones [3]:

Jind 5 (2 cos p /r)2 (10)

It is easily verified that for r 5 5 we find Jind to be numerically identical

to the Hausdorff dimension of a three-dimensional Cantorian space s (3)
c

when the null set, i.e., the kernal d(0)
c of %( ` ), is taken to be d (0)

c 5 f .

This is because

Jind Z r5 5
5 (2 cos p /5)2 5 2 1 f (11)

while the bijection formula [4±13]

dim
H

S (n)
c 5 d (n)

c 5 (1/d (9)
c )n 2 1 (12)

gives the same result for n 5 3 and d (0)
c 5 f 5 ( ! 5 2 1) /2.

Another very important result also found by Jones is the following [14].

If an oriented link L is a closed n-braid, then

Z VL e2 p i /r Z # (2 cos p /r)n 2 1; r 5 3, 4, . . . (13)

It is equally easily verified that the right-hand side of (13) is nothing else

but our familiar bijection formula of Cantorian space %( ` ) and that for n 5
4 and r 5 5 one finds [14, 8]

Z VL e2 p i /5 Z # (2 cos p /5)3 5 (1 /d(0)
c ) 3 5 K dim

H
%( ` ) L 5 4 1 f 3 (14)

when setting d (0)
c 5 f . Here we continue to think of n as the topological

dimension of %( ` ), while r 5 K 1 2 is a parameter, where K can be thought

of as the inverse of the Planck constant " . Equation (13) thus gives the

expectation value of the dimension of the infinite-dimensional hierachical

Cantorian space in this particular case, which is [4±13]

, ^ n & 5 ^ dc & 5 4 1 (4) 5 4 1 f 3 5 2 1 ! 5 (15)

Note that in case of r 5 5 and n 5 3 we have ) VLe
2 p i /5 ) x 5 Jind where ) x
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means evaluated at the corresponding parameters. Note also that for n 5 4

we must have 1 # ) VLe
2 p i /r ) # 8 with 1/2 # d (o)

c # 1.

4. NONCOMMUTATIVE GEOMETRY (NCG) AND
CANTORIAN SPACETIME

Noncommutative algebra is a basic tool in mathematical physics, with

its most important application in quantum mechanics. The aim of noncommu-

tative geometry is to extend the idea to algebraic geometry. The spacetime

concept of NCG and Cantorian spacetime (CST) have many common fea-
tures [8].

For instance, one of the topological invariants of a certain very interesting

noncommutative or ``quantum’ ’ space X, which is the dimension group, is a

subgroup of R generated by Z and the inverse of the golden mean 1/ f 5 1

1 f 5 ! 5 1 1/2. It is followed then that a certain dimension [3]

dim(e) 5 t (e) (16)

can take only values in the subgroup [3]

Z 1 1 1

f 2 Z (17)

Following ref. 3, it can be shown that there is a semigroup K 0 such that

K 1
o (A) 5 H (n, m) P Z2, n 1 1

f 2 1 m $ 0 J (18)

It is clear from the last equation that for n 5 2 and m 5 1 we have

n 1 1

f 2 1 m 5 2 1 1

f 2 1 1 5 4 1 f 3 (19)

which is identical to what we have obtained for d(4)
c 5 ^ dimH %( ` ) & in Equa-

tions (3) and (9). Furhtermore and following the theory of subfactors and

the notation of ref. 3, it can be shown that the index [M: N] of N in M [3]

[M: N] 5 dim
N

(L2(M)) (20)

is also given by

dim
N

(L2(M)) 5
1

(1 2 l 0) l 0

(21)

where l 0 5 Tr M (e). It is clear from the right-hand side of (21) that this
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expression is nothing but the formula for the expectation value of the Haus-

dorff dimension of %( ` ), namely [4±13]

K dim
H

%( ` ) L 5 ^ dc & 5 1/[(1 2 d(0)
c ) d(0)

c ] (22)

and we just need to set

l 0 5 dim
H

S(0)
c 5 d(0)

c 5 f 5 ( ! 5 2 1)/2 (23)

in order to find again our by-now-fam iliar number

[M: N] 5 ^ dc & 5
1

(1 2 f ) f
5

1

f 3 5 4 1 f 3 (24)

It should be noted that minimizing ^ dc & leads to d(0)
c 5 1/2 and ^ dc & min 5

4 5 ^ dimH %( ` ) & min.

Another interesting correspondence between the formalism of %( ` ) and
that of NCG is evident from looking at the expression for t as given on 59

in ref. 3 for Potts modle. There we see that setting q 5 f or 1/ f in

t 5 (2 1 q 1 q 2 1) 2 1 (25)

leads to

t 5 f 3 (26)

and consequently

1/ t 5 [M:N] 5 ^ dc & 5 2 1 ! 5 (27)

A similar result is also obtained for the Jones polynomial of the unlink for

t 5 f . This means

Vu 5 ( ! t 1 1/ ! t) ) 2f 5 4 1 (4) 5 [M:N] 5 1/t 5 2 1 ! 5

5. CONNECTIONS TO FOUR-MANIFOLDS

To illustrate the connections between the geometry of four-manifolds

and %( ` ) consider first the signature t [15]

t 5 b+ 2 b 2 (28)

where b+ 5 dim H+ and b 2 5 dim H 2 are the dimensions of the maximal

positive and negative suspaces of the form H2, respectively [15]. Setting

b+ 5 dim
H

Ker %( ` ) 5 f (29)
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and

b 2 5 dim
H

CoKer %( ` ) 5 1 2 f 5 f 2 (30)

one finds from (28) that [8]

t 5 [b+ * b 2 ] f 5 [b+ ^ b 2 ] f 5 f 2 f 2 5 f f 2 5 f 3 (31)

Recalling that

t 5 [M:N] 2 1 (32)

then

dim
N

(L2(M)) 5 [M:N] 5 1/ t 5 K dim
H

%( ` ) L 5 4 1 f 3 (33)

This is exactly the same result obtained earlier [4±9].

It is worth mentioning here that in ref. 16 it was found that the Fibonacci
numbers play a role in the topology of four-manifolds. The importance of

the PV number 2 1 ! 5 5 4.23606 . . . seems to extend far beyond quasicrys-

tallography, where it found one of its first physical application [8]. The most

important conclusion so far, is however, that the Jones knot invariant has a

natural interpretation in terms of the dimensionality of %( ` ) and the signaute
of four-manifolds.

6. QUASICRYSTALLOGRAPHY AND %%( ` )

One of the surprises which we have encountered recently is that the

expectation value of the effective dimensionality of %( ` ), namely , ^ n & 5 4
1 f 3 5 2 1 ! 5, as well as its inverse f 3 crop up in connection with the

theory of quasicrystallography. In ref. 17 it was found that the Z-module

which carries the diffraction pattern possesses a certain symmetry which is

invariant through a group of homotheties. Noting that Shur’ s lemma entails

under certain conditions that

L p i 1 L 8 p ’ (34)

for any real numbers L and L 8, one finds that

M 5 f 2 3 p i 2 f 3 p ’ (35)
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where p i and p ’ are certain projective matrieses [17] and

f 2 3 5 4 1 f 3 5 2 1 ! 5 5 ^ dc & 5 [M:N] (36)

7. PENROSE UNIVERSES, NCG, AND %( ` )

One of the most important results in noncommutative geometry is

undoubtedly the conclusion by Connes that the Penrose space X represents

in effect an example of a low-dimensional noncommutative space [3].
To appreciate the importance of this result in nonclassical physics we

need just recall that while classical mechanics obeys commutative algebra,

quantum mechanics in the Heisenberg±Born formalism is manifestly a prob-

lem in noncommutative analysis. Thus, the Penrose universe is a unique

medium where classical and nonclassical physics meets. The objective of

this section is to show the intimate connection between Penrose universe and
cantorian spacetime %( ` ), an undertaking which may lead to a resolution of

many paradoxes in quantum physics, by reducing them to the nonclassical

transfinite nature of the ambient micro spacetime of quantum and subquantum

particles. To see how important such an undertaking is as well as the impor-

tance of noncommutative geometry, it may be sufficient to mention that it is
very likely that Einstein’ s opposition to quantum mechanics stemmed from

the fact that all forms of geometries known to him at that time were commuta-

tive. The noncommutative quantum theory of Heisenberg and Bohr may have

therefore remained obscure to him because it did not fit into his basically

geometric thinking. In other words, it may be reasonable to suppose that had

Einstein known about the possibility of noncommutative geometry, he would
most probably have modified his attitude toward quantum mechanics [3].

With the experimental discovery of quasicrystals which possesses the

supposedly forbidden fivefold symmetry, the subject of nonperiodic tiling of

space acquired a prominent place in mathematical physics, particularly in

the context of the work of R. Penrose and H. Conway on Penrose tiling [3].

The recent work of Connes [3] on noncommutative geometry added a
new dimension to the importance of nonperiodic tiling by realizing that X is

an example of noncommutative geometry. The starting point of this realization

is to look at the case of measured foliations with continuous dimension [3].

The general von Neumann projection of the foliations gives a sort of a random

Hilbert space. This is of course reminiscent of Mauldin’ s theorem and our

golden mean theorem [4±13]. The space of Penrose tiling of the plane does
indeed give a very clear geometrical intuitive picture of what a leaf of foliation

could generally look like. The reason for that is simply the following [3].

When analyzing X using classical tools, it appears to be pathological, as

observed by Connes. However when we replace the commutative C*-algebra
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with a noncommutative C*-algebra we find that X is readily analyzed [3].

This is a clear indication of the inherently quantum mechanical nature of the

space X. In this sense we understand this space as an example of noncommuta-
tive geometry of a low-dimensional noncommutative space [3].

The preceding reasoning yields two quantitative results which imply

quite unexpected connections of the Penrose space to knot theory and Can-

torian spacetime. The first result is that X has a natural subfactor which is

identical to the Jones index [3],

Jind 5 (2 cos p /5)2 (37)

This was discussed earlier as an important quantity in knot theory [2]. The

second point is that Jind is itself numerically identical to the Hausdorff dimen-
sion of a three-dimensional Cantorian space which represents a generalization

of Mauldin’ s theorem [2] to three dimensions using the so-called bijection

formula

d(3)
c 5 (1/d(0)

c )(3 2 1) 5 1 1

f 2
2

5 2 1 f 5 Jind (38)

These are by no means the only indications that the Penrose universe can be
seen as a realization of a projection of a four-dimensional Cantorian space with

dim
H

Ker %( ` ) 5 dim ( [ of %( ` )) 5 f (39)

To explain this point we suppose we have a circular region in X of diameter

r . Suppose further that one is transferred to a randomly chosen parallel

Penrose universe. Then we ask the following question: How far do we need

to travel from our initial circular region in order to end in another circular

region which can match the initial one? The answer is that we have to travel

a distance

l r # 1 4 1 f 3

2 2 r 5 (2.118033989 . . .) r (40)

This is the essence of the local isomorphism theorem. This theorem is of

course trivial for a periodic pattern, but the Penrose universe is nonperiodic
and here is the first surprise. The second surprise is that (4 1 f 3)/2 5
2.118033989 is exactly equal to half of 1/ f 3, which is the exact expectation

value for the dimensionality of the hierachical Cantorian universe %( ` ). As

mentioned earlier, this essentially infinite-dimensional universe has an effec-

tive Hausdorff dimension ^ dimH %( ` ) & 5 4 1 f 3 5 4 1 (4) and a topological
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dimension for the effective `̀ core’ ’ of exactly D 5 n 5 4, as can again be

seen immediately from the bijection formula introduced earlier,

dim
H

S (n)
c 5 1 (1/dim

H
S (0)

c 2
n 2 1

(41)

when setting n 5 4 and dimH S (0)
c 5 d (0)

c 5 f

dim
H

S (4)
c 5 d(4)

c 1 1/d (0)
c 2 3 5 (1/ f )3 5 K dim

H
%( ` ) L 5 4 1 f 3 (42)

in agreement with our earlier discussion.

It is worth remembering and stressing again that the distribution used
to obtain these results is the same distribution used to derive the formula of

blackbody radiation. In this sense dimensionality seems to share indeed some

essential features with temperature as anticipated by Finkelstein [20].

8. KNOT THEORY AND THE HAUSDORFF DIMENSION OF A
QUANTUM PATH

As mentioned earlier, a knot is by definition a smooth embedding of a
circle in r 3 [2]. A circle c1 is of course a dim c1 5 1 geometrical object. It

can be deformed to a true knot only in a space S3 where

dim S3 5 3. consequently the codimension must be

Codim Ci 5 dim S3 2 dim C1

5 3 2 1 5 2 (43)

There is however, no ``real’ ’ knots in R 4 for which dim S4 5 4 because all

knots are equivalently trival and dissolve in this higher dimensional space.

The only valid way to generalize the concepts of knot theory to higher

dimensions is to keep the Codim 5 2 constant. Consequently the geoemtrical
object corresponding to the circle must have a dim C2 5 2. Therefore in R 4

we must have

Codim C2 5 4 2 2 5 2 (44)

In other words, to have a knot in R4 we must have

dim C2 5 Codim C2 5 2 (45)

The next point is based on the hypothesis that all particles and all interactions

between particles in microspace are a manifestation of fractal-like knots in
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the `̀ fabric’ ’ of Cantorian spacetime %( ` ) at an appropriate resolution. Now

since %( ` ) is effectively four dimension by virtue of

, K dim
T

%( ` ) L 5
dim C2

dim CoKer %( ` ) 2 1 5 5.23606 2 1 5 4 1 f 3

. 2 ^ 2 5 2 % 2 5 4 (46)

then it follows that we could not have a knot, a particle, and consequently

a particle path in %( ` ) unless dim C2 5 2, and that means

^ d (2)
c & 5 dim C2 5 Codim C2 5 2 (47)

In this sense a Cantorian spacetime sheet must fall back on itself and

thus form an effective four-dimensional knot. That is basically why a

quasicontinuous connection in %( ` ) is essentially a path with a Hausdorff

dimension ^ d (2)
c & 5 2 [4±13]. In this context two more side remarks are

in order. First we recall the Frish±Wasserman±DelbruÈ ck conjecture, which
states that the probability for a randomly embedded circle to be knotted

tends to one as the length of the circle tends to infinity. For a `̀ fractal’ ’

circle, the length of any part is infinite provided the circle appears to be

continuous at the corresponding resolution of observation, and if the

FWD conjecture is correct then a fractical circle is everywhere knotted.

Furthermore , FWD implies also that a self-avoiding polygon must be
knotted and since in 4 dimensions a polygon is naturally self-avoiding,

this means our ``circles’ ’ in %( ` ) must be knotted. We will regard all

forms and particle interactions as a manifestation of these transfinite-

fractal knots as indicated earlier. Finally, we may recall that the univeres

as a whole may be regarded in some speculative models as a knot

complement. This concludes our topological justification of ^ d (2)
c & 5 2.

9. THE SO-CALLED WAVE± PARTICLE DUALITY, NCG,
AND %%( ` )

The aim of the present section is to show that the indistinguishability
theorem of Cantorian spaces %( ` ) [7]

V
%

5 V
%

5 f 3, f 5 ( ! 5 2 1)/2 (48)

is conceptually homomorphic to a wave±particle interpretation of the index
theorem of Toeplitz operators [13]

Ind(T( f )) 5 ^ [ h ] f*[T] & (49)



Noncommutative Geometry in %%( ` ) Space 2947

In fact, it can be shown in an elementary fashion that our indistinguishability

theorm (48) is derivable from the index theorem of (49), which we do next.

Let f be a complex continuous and never vanishing periodic function
on R with a period 2 p ; then we can write

f (x) 5 e inx 1 c (x) (50)

where n can be interpreted as a winding number:

n 5
1

2i p #
2 p

0

[( f8(x))/( fx)] dx (51)

for the closed path

g 5 f (T ) (52)

in the complex plane given by the image

T 5 R / Z (53)

The winding number can be also expressed as

n 5 # g

1

2i p Z
dZ 5 # g

h (54)

where the closed 1-form h defines a de Rham cohomology class in the first

cohomology group [13].
Similarly and since g is a closed path, and therefore defines a homology

class we have [ g ] 5 f *[T ]. Consequently using de Rham duality, n can be

written as

n Þ n
^

5 2 ^ [ h ] f*[T ] 5 2 ^ [ h ][ g ] & (55)

The right handside of the above equation (55) is thus analogus to the

Born formula and reflects therefore the homological structure of the

SchroÈ dinger wave quantization. next let us state the well known result

that the Toeplitz operator T ( f ) is Fredholm [13]. Since a Fredholm

operator admits a finite dimensional Kernel and co-Kernel we can state
the well known formula

Ind(T) 5 dim(Ker (T)) 2 dim(CoKer(T)) (56)

This formula is clearly analogus to the index of four manifolds when we

admit continuous dimensions [4±8]

Now we can state the index theorem

Ind( T ( f )) 5 2 ^ [ h ][ g ] & 5 n (57)
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In words, this means, the index of a Toeplitz operator T ( f ) is equal to the winding

number n off. However, since the left hand side of (56) and (57) are a winding

number in terms of an operator, it is analogus to the essentially particle
picture of the Heisenberg-Born quantization formalism. Consequently we

may write

n Þ n
%

5 Ind(T ) (58)

Next we like to give a derivation of the index theorem of equ. 49 using

a purely formal analogy between the formalism of the index theorem and

that of Cantorian spaces %( ` ). This procedure which holds for knot theory,

noncommutative geometry as well as four manifolds [10] will be referred

to rather loosely as `̀ analogical’ ’ continuation. Following ref. 15, equation

(56) can be rewritten by performing the following replacements:

Ind( T ( f )) ® t 5 b+ 2 b 2 (59)

dim(Ker (T ( f ))) ® dim(Ker (%( ` ))) 5 b+ 5 f (60)

dim(CoKer (T ( f ))) ® dim(CoKer(%( ` ))) 5 b 2 5 f 2 (61)

where f 5 ( ! 5 2 1) /2 is the golden mean,

Consequently one finds

n
%

5 Ind (T (F)) 5 t 5 f 3 (62)

f 3 is the inverse of the well-nown expectation value for the dimension of

%( ` ), namely ^ dimH %( ` ) & 5 4 1 f 3, which is a PV number.

On the other hand, making the following exchanges in equation (55)

[ h ] ® ^ 2 f 2 ) (63)

and

[ g ] ® ^ f ) (64)

one finds

n
^

5 2 ^ 2 f 2 ) f & 5 f 3 (65)

Next we invoke the geometric probability interpretation of the Hausdorff
dimension of the kernel and cokernel of %( ` ) as discussed, for instance, in

ref. 4. We see immediately that n as given by (56) and (62) is essentially the

addition theorem of independent probability events, which can be consistent

only with a particle picture.
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On the other hand, equations (55) and (65) are a clear statement of the

multiplication theorem, which make sense only for extended objects such as

a SchroÈ dinger wave and never for a particle. In other words

n
%

5 n
^

(66)

is entirely consistent with

V
%

5 V
^

(67)

as well as the wave±particle duality interpretation of the index theorem [5,18].

10. CONCLUSION

Starting with a transfinite hierachical spacetime %( ` ) of infinite dimen-
sions and following some ideas due to A. Wheeler, D. Finkelstein, and

C. von WeizsaÈ cker, we derive a finite expectation value and an effective

Hausdorff dimension for %( ` ) using a gamma distribution. This is the

same distribution used to derive the Maxwell velocity distribution law as

well as the Planck blackbody radiation formula. This may be seen as an
indication for a conceptual link between temperature and dimensions. The

transformation %( ` ) ® , %(4) can then be used as a basis for developing a

form of transfinite hierachical superstring theory which is closely related

to knot theory, noncommutative geometry, and quasiperiodic tiling. The

hierachical dimensional formula ^ dc & 5 4 1 (4) 5 4.23 . . . is obtained for

%( ` ) without the need of supressing any terms such as the Lovelace term [1
2 (D 2 2)/24] or invoking supersymmetry and it allows for a wide spectrum

of a possible quantized `̀ vibration’ ’ on finer and finer `̀ dimensional’ ’ scales.

In addition, the relativistic demand on a minimum string’ s world surface

can be met in our model in an elementary fashion by minimizing ^ dc & as

given by equations (21) and (22). The result follows then from Differ ^ dc & 5 0

to d(0)
c 5 1/2 and consequently ^ dc & min 5 4 in a natural way.
Important insight into the meaning of the connection between topologi-

cal quantum field theory, knots, and %( ` ) may be gained by contemplating

the meaning of n in both equation (2) for dim S (n)
c and equation (13) for

) VLe2 p i/r ) . In the first, n clearly denotes topological dimension. In the

second, the meaning of n is slightly more involved. An n-braid is a braid
group on n strands Bn. This Bn can be defined formally as a fundamental

group in configuration space Cn of n distinct points. The braid can then

be viewed as the spacetime graph of motion along a closed connection

in cn and that establishes the analogy to our %( ` ) spacetime. The next

step is to look at the classical limit of the corresponding TQF theory by
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letting " ® 0 in the usual way. Now we know that r 5 k 1 2 and that

the level of the theory, k, plays the same role as 1/ " . Consequently for

" ® 0 we have k ® ` and thus r ® ` . This means Cos p /r goes to
unity and we are left with ) VLe2 p i/r ) # (2)n 2 1. This means for a space

behavior (n 5 3) one finds ) VLe2 p i/r) # d(3)
c 5 4, which is our classical

spacetime dimension indicating that one dimension (4 2 3 5 1) will

remain invisible in the three-dimensional space giving rise to n 5 3 1
1 spacetime. It is also clear that 2 cos p /r 5 2 corresponds in the

bijection formula to d(0)
c 5 1/2. In turn, for d(0)

c 5 1/2 we have , ^ n & 5
3 and ^ dc & 5 4, which reinforces our conclusion of why classical spacetime

is 3 1 1 rather than simply 4 dimensional [21], [22].
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